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 Abstract

The multigrid method has been shown to be the most effective general method for
ing the multi-dimensional diffusion equation encountered in neutronics. This being th
method of choice, we develop a strategy for implementing the multigrid method on c
puters of massively parallel architecture. This leads us to strategies for parallelizing 
relaxation, contraction (interpolation), and prolongation operators involved in the met
We then compare the efficiency of our parallel multigrid with other parallel methods 
solving the diffusion equation on selected problems encountered in reactor physics.

 1.  INTRODUCTION

In this work we study the parallelization of the multigrid method for solving multidi
mensional diffusion problems. The reason for doing this is twofold: (1) the main comp
tional platform for the foreseeable future will have a massively parallel architecture, 
(2) the most effective method for inverting the multidimensional diffusion operator
encountered in neutronics is the multigrid method (Alcouffe, et al., 1981) and (Alcou
1983). However the task at hand, parallelizing the inversion of the diffusion operator
formidable one since we also desire to do this in an efficient and scalable manner. A
able algorithm is one which as the number of processors increases, the computationa
decreases proportionately. Because of the use of multiple grids and the need to com
cate between them, the multigrid method inherently is difficult to make scalable. Our
text in attacking the communications problem is message passing, and we use the me
incorporated into MPI on our machine.

In the following we outline the steps required for the multigrid method for inverting t
diffusion operator and we investigate how to make these steps parallel. We then sel
some problems to measure and demonstrate our degree of success. The implemen
has been carried out in the PARTISN code (Alcouffe, et al., 2000).

1.1  Discretization of the Diffusion Equation

In this paper we focus on neutronics where the diffusion problem is generally a m
group one which necessitates the solution of a diffusion equation for each energy grou
addition, for fission problems we need to do outer iterations; thus, we invert the diffu
operator many times in the course of the solution of neutronics problems. Efficiency in
(1)
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inversion of the diffusion operator is therefore critical and we attempt to minimize the
computational effort by choosing as simple a differencing of the diffusion operator as
sible. The simplest form of the finite differenced diffusion operator has a five point ste
in two dimensions and a seven point stencil in three dimensions. Also in order to be
patible with the DSA method, we take the unknowns to be on the mesh vertices. To 
we write the diffusion equation in the following form:

(1)
where

D is the diffusion coefficient,

 is the removal cross section,

Q is the source, and

φ is the flux to be solved for.

The vertex centered finite difference form of this equation is written as follows:

(2)
where

H, V, and F are the horizontal, vertical, and front-back leakage
 coefficients derived from D and the mesh cell sizes, and

W is the cell volume.

1.2  The Multigrid Method

Briefly, the multigrid method for this work makes use of a series of grids which are
subset of what is called the fine mesh grid used to discretize the diffusion equation. 
coarser grids are such that there are two finer-grid mesh intervals within each coarse
interval in each coordinate direction. An allowance is made for the last coarse mesh
val to be the same size as the fine mesh interval if the number of finer mesh intervals
evenly divisible by 2. An example of a series of grids is shown in Fig. 1 below. The coa
mesh points are designated by X in the figure and the coarsest mesh points are those
nated by✯.
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To layout the multigrid method, we write the discretized diffusion equation on the 
est grid in operator notation as:

(3)
Assuming that we don’t invert the solution on the finest grid, n, exactly, we form the re
ual on that grid as;

We then form the correction equation on the coarser grid, n-1, as:

(4)
where

is the interpolation operator, and

is the prolongation operator which is derived from the interpolation.
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Fig. 1           An example 3 level grid for the diffusion equation.
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The interpolation operator is defined to explicitly account for large discontinuities in t
diffusion coefficient, D, and is a linear interpolation based upon the continuity of the d
sion currents, . The prolongation operator is adjoint to the interpolation operato
both are given in (Alcouffe, et al., 1981). Since the solution to Eq. (4) is the correction
the coarser grid to the solution on the fine grid, the corrected fine grid solution is thu

(5)
In order to solve Eq. (4) we then use a still coarser grid, n-2, and follow the same pr
dure used to obtain Eq. (4). This results in a series of grids from the finest to the coars
develop corrected solutions on the next finer grid. The solution for the correction on 
coarsest grid is obtained by direct inversion.

The multigrid method as used to invert the diffusion operator can thus be describe
the following procedure:

a. Do a relaxation sweep over the fine grid; we have found that the most efficien
relaxer is line relaxation in each of the 3 coordinate directions

b. Form the residual and transfer it to the next coarser grid using the prolongatio
operator.

c. Do a relaxation sweep over this next coarser grid using the same relaxation me
as for the fine grid.

d. Repeat steps b and c until the coarsest grid is reached. On the coarsest grid 
direct inversion of the diffusion operator to obtain a solution.

e. Interpolate the solution from the coarsest grid onto the next finer grid and add
the correction obtained from the relaxation step b.

f. Do a relaxation over this grid to smooth the correction.

g. Repeat steps e and f until the finest grid is obtained.

The procedure outlined above is called a V-cycle for the multigrid method. Once the fi
grid has been attained in this procedure, the error (L2 or L-infinity norm) is computed
a test is made to determine if the error has been sufficiently reduced to exit the proce
If not, another V-cycle is performed until convergence is attained.

1.3  PARTISN Parallelization

The parallelization technique in PARTISN is based upon spatial domain decompo
tion. The X direction mesh quantities lie entirely within a processor, but the Y and Z di
tions are divided into subdomains which are distributed over a two-dimensional proce
space. The layout for a 16 processor decomposition is as depicted in Fig. 2 below. T
numbers in the cells indicate the processor number that contains its portion of the sp
mesh in the Y-Z plane. This arrangement has ramifications in the solution of the diffu
equation by the multigrid method. In the 1 processor case it was noted that line relax
in each of the coordinate directions was the preferred relaxer. In the parallel case wi
current spatial decomposition, a line relaxation in the X direction entails no data trans

D φ∇–
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in the direction of the line sweep; however, in the Y and Z directions, data communic
tions are necessary and will have an impact on the performance and scalability of the
tigrid method.

2.   PARALLELIZATION OF THE MULTIGRID METHOD COMPONENTS

In order to make the multigrid method parallel, we must consider the parallelizatio
each of the steps outlined in section 1.2 in the light of our spatial mesh decompositio
That is, we must parallelize the generation of the coarse mesh coefficients for each 
the application of the prolongation operator to lay down the residuals, the interpolati
operator, and finally the relaxation method. In the parallelization of the relaxation on e
of the meshes, we will consider 2 methods: (1) line relaxation in each of the coordin
directions, and (2) line relaxation in the X direction only with a red-black updating of
flux in the Y and Z directions. We will discuss some refinements of option 2 in the sec
on relaxation with respect to our approach of load balancing.

2.1  A Load Balancing Technique for Multigrid

We note that with the spatial decomposition described in Section 1.3 and the fact
the number of mesh intervals on each grid decreases by a factor of 8 from finer to c
grid, we will reach a condition where the number of mesh intervals for a grid on each
cessor will be too few for efficient computation. Thus in the interest of load balancing

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 2   An example of a 16 processor PARTISN decomposition.
Y

Z

X
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the sense that we desire to keep the ratio of communication to computation effort the
on the coarse meshes as on the finest mesh, we subdivide the processor space suc
each successive coarse grid will occupy a smaller subset of the processors that the 
grids. Referring to Fig. 2, we condense the processor space by a factor of 2 in the Y a
directions as we coarsen the grid. In Fig. 3 we give an example of such a processor
tioning.

In this example, the finest grid is partitioned onto 28 processors; the next coarser g
partitioned onto 9 processors; and the remaining grids all reside on PE 0. Thus if we
going from the finest to the coarsest mesh, the information of the finest mesh must b
transferred from its processors to the 9 processors of coarser grid. Thus in the exam
above, the information on PE’s 0, 1, 7, and 8 goes to PE 0; the information on 2, 3, 9,
10 goes to PE 1; that on PE’s 4, 5, 6, 11, 12, and 13 goes to PE 3; that on PE’s 14, 
and 22 goes to PE 7; that on PE’s 16, 17, 23, 24 goes to PE 8; and that on PE’s 18, 1
25, 26, and 27 goes to PE 9. Then going from that coarse grid to the next coarsest, 
information on PE’s 0, 1, 2, 7, 8, 9 goes to PE 0. In this way the amount of work don
each grid remains approximately the same on a per PE basis except for the factor o
the X direction. This process is reversed in going from the coarser grids to the finer w
is basically the interpolation operation. Of course while that work is being done on th
receiving PE’s, the others remain idle. There is also the overhead of moving the data
the sending to the receiving PE’s. We will show the impact of this on the efficiency o
multigrid algorithm in our examples below.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

Fig. 3     Processor arrangement for finest to coarser grids.
(6)
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2.2  Generating the Coarse Mesh Diffusion Operator in Parallel

To indicate how this is done, we derive the coarse mesh leakage operator from th
mesh operator, Hi. We first form an intermediate quantity on the fine grid in the Y and 
directions, Hxic:

(6)
This quantity is formed on all the fine mesh processors. The coarse mesh coeffic

then formed on all the fine mesh processors by doing the following operation:

(7)
In Eq. (7) the j and k indices are the fine mesh while jc and kc are the coarse mesh

cies. Of course, Eq. (7) is evaluated at each coarse mesh ic. We note that at proces
boundaries, we need to move the leakage data from adjacent processors in order to
account for the j-1, j+1, k-1, and k+1 fine mesh quantities appearing the Eq. (7). Thi
done by an MPI send-receive operation over the mesh on the processor faces. Onc
coarse mesh operator has been evaluated, it must be moved from the fine mesh proc
to the coarse mesh processors. The other leakage coefficients are treated in a way 
similar to that done in Eq. (7). The removal term is treated like that given to the prolo
tion operator described below.

2.3  The Prolongation Operator in Parallel.

The prolongation operator, , is one that lays down the fine mesh quantity onto
coarse mesh much like that shown in Eq. (7). If the fine mesh quantity is , then 
prolongation is:

(8)

(9)
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As a parallel implementation, Eq. (8) is done on each processor to accumulate the
mediate values. Then Eq. (9) is evaluated on each processor with data being moved
processor boundaries in the Y and Z directions as appropriate. When R has been com
on the fine mesh processors, it is then moved to the coarse mesh processors in the
way as the coarse mesh coefficients are.

2.4  The Interpolation Operator in Parallel.

The interpolation operator takes the coarse mesh solution and puts it on the finer m
In order to do this the discretized diffusion operator is utilized to better account for dis
tinuities in the diffusion coefficient. In this vein, interpolation is done first along lines 
the mesh, then on faces, and finally the center point of each coarse mesh. This is illus
in Fig. 4:

In Fig. 4, the X’s are the coarse grid points and the colored symbols denote the sequ
of interpolations. To do the interpolation in parallel, we first go through the Y-Z plane
defined by the coarse grid on each processor and interpolate in lines along Y and th
lines along Z. These are the red★ symbols in the diagram. We then do the interpolation o
the Y-Z faces denoted by the✤ symbols. Next we do the interpolations along lines in X fo
the coarse X-Y faces as denoted by the symbol★. This is followed by interpolations on
the X-Y faces denoted by✤. This is followed by interpolations on the X-Z faces (✤).
Once these are done then the body centered point (✵) can be obtained by interpolation
from the 6 face centered points. To do this in parallel requires a consideration of the
cessor boundaries which involves moving coarse mesh information on the processo
boundaries. The fine mesh solution is then moved from the coarse mesh processors

X X

X X

X X

XX

✯ ✯

✯

✯

✯

✯

✯✯

✯

✯✯

✯

✤

✤

✤

✤

✤✤ ✷

XY

Z

Fig. 4   The interpolation of the coarse mesh solution to the finer mesh.
(8)
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finer mesh processors. To illustrate the interpolation operator for lines along the Y d
tion, we have:

where jc refers to the coarse mesh points and jf the fine mesh points. On the Y-Z fac

The center point, (✵), uses the six face points and the corresponding six leakage coe
cients in each direction.

2.5  A Parallel Relaxation Method.

In the multigrid method, the purpose of the relaxation step is to damp the high fre
quency error as measured on the grid level being solved. Experience has shown that
most effectively done by doing line relaxation along each of the coordinate directions
illustrate this procedure by examining the method used to do line inversion in the X d
tion. We form an iterative procedure where we move the off line components of the d
sion operator of Eq. (2) to the right hand side (RHS) as:

where l is the red-black iteration index. (10)

The steps in the solution of Eq. (10) is thus to form the right hand side which in th
multiprocessor case involves MPI send-receives at the processor boundary for our s
decomposition. The solution is then found by inverting the left hand side in a forward
elimination - backwards substitution method that is the normal procedure for a tridiag
solver. In the parallel case once the RHS has been formed, the solution is scalable w
number of processors since all of the i mesh are on each processor. This is not true
lines in Y and Z and thus line relaxation in those directions is not very efficient. We s
that in our examples. We designate this method as MG, i.e., full multigrid.

As an alternative, we do red-black points over the mesh as a relaxation method w
line inversion in the X direction only. Thus as shown in Fig. 5 the red-black arrangem
of the lines in the Y-Z plane allows the computation of the RHS using the current value
the solution which means that all the either red or black lines can be solved simulta-
neously. Thus we have a parallel algorithm for the line relaxation in the X direction. W
find that for many of the problems that we have solved, it is sufficient to do this solve
sweeping over the Y-Z plane 2 times per grid to get good performance out of the multi
algorithm. We designate this method as MG1L, i.e., multigrid with line sweeps in X o

For completeness we also have two preconditioned conjugate gradient methods t
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 solve the diffusion equation. The conjugate gradient method is selected because it 
ily made parallel. The preconditioning is necessary for good performance of the meth
the general case. The first preconditioner we use is that described above for the mu
relaxation - we use line inversion in the X direction with a red-black sweep of the Y-Z
plane. This method we term CG1L. The second preconditioner is to use the MG1L me
above which we designate as CGMG.

 3. EXAMPLE DIFFUSION PROBLEMS

We have chosen two problems to demonstrate some of the properties and the pe
mance of the parallel multigrid method while comparing to the current method for solv
the diffusion equation in PARTISN. The first problem is based upon our favorite shield
problem, what we call the iron-water shield problem. We use this to lay out some of 
basic performance issues for a source driven, 3D diffusion problem. The second pro
is based upon a small light water reactor on which we seek to compute the k eigenval
the system. This is a more challenging diffusion problem because of the fissions and
highly heterogeneous (Baker, 1997). We use this to demonstrate that our observatio
the simple shield problem carry over to a more complicated 3D criticality problem.

3.1  Diffusion Solution of the Iron-Water Shield Problem.

A 2D schematic of this problem is given in
Fig. 6 and the 3D version is a symmetric
extension of this in the Z direction. The
source region contains a uniform spatial
source with a 3 group energy distribution
given as 0.739, 0.261, 0.0. Given this sourc
and the 3 group cross sections, we are able
solve the diffusion problem. We choose to
solve this using the multigrid with the X-line
sweep as the relaxer (MG1L). We compare
this with the conjugate gradient method tha
is standard in PARTISN which has as a pre
conditioner the same X-line sweep with red

R  B R  B R  B R  B R  B R  B R  B R  B

R  B R  B R  B R  B R  B R  B R  B R  B

B  R B  R B  R B  R B  R B  R B  R B  R

B  R B  R B  R B  R B  R B  R B  R B  R

R  B R  B R  B R  B R  B R  B R  B R  B

Fig. 5   Line arrangement on the Y-Z plane for relaxation.
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Fig. 6  Iron-water shield schematic.
(10)
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black updating in the Y-Z plane (CG1L). The one processor version of the spatial me
used to solve the problem is a uniform 1 cm mesh throughout, thus 50x50x50 cells. 
number of mesh intervals is changed on the multiprocessor problems so as to mainta
same number of mesh intervals on each processor. Since the extent of the problem g
try remains the same, this means that the mesh is refined in going from 1 to 126 pro
sors; the latter thus has 16 million mesh intervals (252x252x252). In Tables 1 and 2 
present some selected results on the time spent in various portions of the solution.

Column labels are: Procs, the number of processors used, Total, the total solution
T_diff, the time spent in inverting the diffusion operator, T_tlx, the time devoted to re
ing over the mesh, T_int, the interpolation time, and T_prl, the time for the prolongat
operation. The remaining time, not shown, is the diffusion setup time which includes
line relaxation precalculations and the CG operations for the CG method. The grind 
is the time expended in the solution per spatial mesh cell and a work unit is measure
terms of an X-line relaxation over the entire mesh of the problem.

TABLE 1. Iron-Water Shield Data from a Parallel Multigrid Solver

Multigrid Component Times (secs)
Work
Units

Grind
Time (ns)Procs Total T_diff T_rlx T_int T_prl

1 9.3 7.44 5.06 1.11 0.51 74.7 994.0

2 13.5 11.28 7.84 1.67 0.71 76.9 700.5

4 17.2 14.87 10.43 2.04 1.10 79.0 441.2

8 17.1 14.70 9.15 2.87 1.27 81.0 211.0

16 19.9 17.24 10.88 3.17 1.44 81.0 122.6

32 23.1 20.26 12.12 4.34 1.87 89.6 64.0

64 22.7 19.70 11.77 4.10 1.76 85.3 33.3

126 33.8 29.25 16.12 6.69 3.21 85.3 25.1

TABLE 2. Iron-Water Shield Data from a Parallel Conjugate Gradient Solver

CG Component Times (secs)
Work
Units

Grind
Time (ns)Procs Total T_diff T_rlx T_int T_prl

1 20.3 18.56 11.50 0.0 0.0 159 1019.3

2 34.0 32.03 19.56 0.0 0.0 191 711.7

4 41.1 38.84 21.76 0.0 0.0 243 342.9

8 49.5 47.60 25.86 0.0 0.0 298 166.2

16 61.8 59.80 33.47 0.0 0.0 367 84.2

32 80.6 78.60 42.69 0.0 0.0 460 43.6

64 154.7 151.97 58.81 0.0 0.0 562 34.4

126 284.7 273.81 93.33 0.0 0.0 696 25.8
(11)
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Upon examining the tables, one thing that is immediately striking is that the multig
method is very stable on the amount of work that is being done to develop the soluti
the mesh size is decreased. The work unit referred to in the tables is measured as th
putational work expended to do one line sweep of the entire mesh of the problem. Th
bility of the multigrid method is one of its main hallmarks. This of course has an imp
on the computational time in that if the method scaled perfectly, then the time to solve
problem would be constant. Looking at the total column for the multigrid method, we
that the time increases and thus our method is not scaling perfectly. From the table we
see that the relaxation time goes from 70% of the diffusion solution time to 55% at 1
processors while the interpolation time goes from 15% to 23%, and the prolongation
goes from 7% to 11%. What is useful to note is that the interpolation time increases
tor of 6 in our processor range as does the prolongation while the relaxation increase
factor of 3 with the total diffusion time increasing by a factor of 4. Thus the least scala
parts of our algorithm are the interpolation and prolongation parts.

In the preconditioned conjugate gradient results we note that the number of work
to achieve a solution increases as the problem mesh is refined. In going from 1 to 12
cessors, the solution increases by a factor of 4; however, the total computation time
increases by a little over and order of magnitude. This is due, in part, to the commun
tions costs with increasing numbers of processors for the inner products involved in 
conjugate gradient solution.

3.2  Diffusion Solution of a Small Light Water Problem.

In order to further demonstrate the performance of the parallel multigrid, we have
sen compute a version of a light water reactor as a diffusion problem. This is a 2 gro
representation of a heterogeneous light water reactor whose spatial layout is depicte
Fig. 7.
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Fig. 7  Schematic of LWR problem for multigrid testing.
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In doing a scaling test on this problem, we start from the 1 processor case to mesh
this case we use a 1 cm mesh spacing throughout the system resulting in a 25x25x2
mesh. For the multiprocessor cases, we keep the mesh spacing the same while incr
the number of mesh intervals so that the number of mesh intervals per processor is a
imately the same. For example, in the 16 processor case we have a 63x63x63 mesh
lem which is 15,628 mesh intervals per processor compared to 15,625 for the 1 proc
case. We note that the span of the number of mesh intervals in going from 1 to 1008
cessors from 1.56e4 to 1.60e7. The LWR scaling problem is run as a Keff computat
where the error is iterated down to 1.0e-6 for both Keff and the pointwise fission dist
tion. We first present the overall results of the scaling calculations and we examine s
of the details subsequently. In Table 3, we give the grind time and total run time result
each of the methods as a function of processor count on our ASCI bluemountain plat
which is based upon the SGI ORIGIN/2000 architecture.

The grind time is the calculational time per spatial mesh cell which in a scaling st
should decrease linearly with the number of processors. In examining the grind time
results we see that this time does decrease for all methods but with varying rates and
out for large number of processors. In the second section of Table 3 where we have
sented the total calculational time, we see a clear indication of the superiority of the m
grid method vs. the conjugate gradient method. This is because the multigrid metho
much more stable in terms of convergence rates than are the CG methods which ov
comes the poorer performance in terms of grind times. Also from the MG results we
that doing the 3 line relaxation is not worth the expense in terms of the method’s per
mance. We depict these results graphically in Figs. 8a and 8b.

TABLE 3. Multigrid Performance Data From LWR Problem on the SGI.

Diffusion Grind Time (ns) Diffusion Solution Time (secs)

Procs CG1L MG MG1l CGMG CG1L MG MG1L CGMG

1 900.2 895.3 909.4 1246.9 3.9 4.1 3.0 3.0

2 570.1 550.0 552.4 760.6 5.0 5.3 3.7 4.1

4 244.9 334.2 351.4 487.0 4.7 6.2 4.4 5.3

8 135.8 225.7 194.5 269.4 5.8 8.4 5.2 7.4

16 86.8 156.9 113.2 159.5 9.1 12.0 7.0 9.8

32 43.2 88.9 59.8 83.8 11.0 16.6 9.3 12.7

64 21.7 59.4 37.0 52.5 68.8 26.8 12.0 18.2

126 18.6 53.2 26.7 33.1 30.5 54.9 18.0 29.0

252 14.4 39.7 23.9 34.9 53.5 97.6 40.4 186.0

504 7.63 35.8 19.9 27.6 260.5 202.2 106.7 215.4

1008 8.02 37.9 15.6 18.4 672.7 490.6 157.1 340.8
(13)
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The results depicted here for the grind time clearly shows that our scaling results a
from ideal especially when we go above 126 processors. This is due to the performan
the MPI communication efficiency on this particular SMP architecture where ‘off-box
communications have a much higher latency that ‘on-box’ communications which in
case is 128 processors. There is hope that with an improved MPI this situation can be
liorated. From Fig. 8b the increase in the total computation time with number of proc
sors is partly due to the increase in the grind time but also to the increase in the numb
outer iterations needed to converge the problem with more mesh points.

In looking at the components as a percentage of the diffusion solution time in the
MG1L method, we note that relaxation goes from 44% to 30% of the total as we go fro
to 1008 processors. The interpolation time goes from 11% to 15%, the prolongation
goes from 13% to 7%, and the setup time goes from 39% to 40%. Thus as compared
source driven problem, the fission iteration problem sees a lot more time spent in the
for the line relaxation than in the relaxation itself!

3.3  A Study of Our Parallelization of the Diffusion Multigrid Method.

We have presented above a results oriented assessment of our particular approac
parallelization of the inversion of the diffusion operator. In this section we look at wh
might be loosely termed a computer science evaluation of the same thing. To this en
utilize a tool called VampirTM from PALLAS GmbH. In this case we do a statistics displa
which shows the percentage of time on each processor that is spent in the applicatio
gram (i.e. doing the actual computational work) and the time spent in the various as
of the MPI communications. In Fig. 9 we give the results from the 64 processor run of
LWR problem using the MG1L method. This is a bar chart where the red bar is for th
application, the blue is for MPI barriers, the yellow is for MPI send-receives, the gree
for MPI allreduce, and cyan is for MPI receives.
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Fig. 8a Grind time from LWR scaling.          Fig. 8b  Total time from LWR scaling.
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Recalling that the fine mesh is the only grid on all 64 processors while the next fin
grid is on the 16 processors in the left hand corner of the chart, we see the impact o
processor portioning of the grids. The fine mesh work outside of the 16 processors is
inated by the MPI barrier meaning that these processors spend most of their time w
for work. For all processors the bulk of the work is in the MPI send-receive with the M
allreduce coming in next at about a third of the time spent in send-receives. The fac
the next finest grid, n-1, communicates with only the 4 processors of grid n-2 is barely
cernible in this display of the MPI barrier, meaning that those processors are relative
busy compared with the bulk of the 64. We find this information useful in the future tun
of this method of parallelization suggesting where we should concentrate our efforts
improvement.

 4. CONCLUSIONS

We have shown that it is possible to implement a method that makes the multigrid
tion of the diffusion equation parallel. We show that it competes well as far as total c
putation time on representative diffusion problems in reactor physics with the best me
we are aware of - preconditioned conjugate gradient. However, it is clear that more n

Fig. 9  Vampir Statistics from a 64 Processor MG1L Calculation of LWR.
(15)
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to be done to make the multigrid method efficient on hundreds to thousands of proce
on the current SMP architectures. Communication is a significant cost for multigrid an
other means of effecting communication between grids needs to be investigated. But
the remarkable stability of the multigrid method itself on typical neutronics problems
deem the effort to make it efficient on thousands of processors a worthy goal. To thi
we are working at reducing the setup costs since they figure prominently in neutroni
problems with fission and/or upscatter or those that are time dependent. We are als
ing ways to speed up the computations on the coarser grids so as to avoid making th
mesh processors wait so long to compute.
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